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Abstract
We present a new formulation of the spinning gas cloud model of Ovsiannikov
and Dyson (in the case of rotation around a fixed axis), in terms of a 4 × 4
symmetric matrixMwhich is a linear function of four coordinatesxi . We obtain
a pair of separable variables �1, �2 related to the xi by a simple transformation,
and discuss their geometrical meaning.

PACS numbers: 02.30.Ik, 02.30.Hq, 51.10.+y

1. Introduction

We consider the ordinary differential reduction of the equations of gas dynamics (Ovsiannikov
1956, Dyson 1968) which represents rotating gas clouds of ellipsoidal shape, expanding
adiabatically into the vacuum while maintaining a Gaussian density profile, a linear velocity
distribution, and a uniform temperature inside the cloud.

The spatial distributions thus being specified, the evolution of the system may be described
by functions of time only, which satisfy a differential system of order 18. That system may
equivalently be viewed as representing Hamiltonian motion of a particle in a potential in
nine-dimensional Euclidean space (Dyson 1968).

We restrict our consideration here to the case of a monatomic gas (of adiabatic index
γ = 5/3) evolving without vorticity; the equivalent single-particle description then represents
Hamiltonian motion in the space O(3) × S2, where S2 is the unit 2-sphere (where each point
corresponds to a particular ellipsoidal shape) and O(3) is the three-dimensional rotation group
(where each point corresponds to a particular orientation of the ellipsoidal cloud).

In more general cases including vorticity, there is a second symmetry group O(3), and
the Hamiltonian motion takes place in O(3)× S2 ×O(3), which is also the eight-dimensional
sphere S8 (the unit sphere centred at the origin of coordinates in Dyson’s nine-dimensional
Euclidean space), but we will not consider such motions in the present paper.

In a recent work (Gaffet 2000, hereafter referred to as paper I), we have shown Liouville
integrability of the Hamiltonian motion in the restricted case of a cloud rotating around a fixed
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principal axis (this result was later extended to cover fully general states of rotation by Gaffet
(2001)). In such cases the motion takes place in O(2)×S2 and, as the three integrals of motion
required for Liouville integrability do not involve the position coordinate in the space O(2),
the system effectively represents particle motion on the sphere S2 in a potential.

Liouville integrable systems (Landau and Lifshitz 1960) are characterized by the property
that the differential of action, dS = p dq, is an exact differential on all surfaces (S) in phase
space (the Liouville tori) obtained by specifying the values of a complete set of commuting
integrals of motion. In the present case, these are a family of surfaces (which we may refer to
as the two-dimensional phase space) in three-dimensional space R3, whose equation has been
given in paper I for all values of the three integrals of motion (the energy Ê, the total angular
momentum �J 2, and another integral denoted by I6). However, the quadratures determining the
action cannot be performed in practice unless a parametrization of the corresponding surface
is available.

It is the purpose of the present paper to provide such a parametrization, and, as it turns
out, the parametrization that we obtain also solves the problem of separating the variables at
the same time.

In the simpler non-rotating case (Gaffet 1998) we have shown, through an appropriate
change of variables, that the two-dimensional phase space can be represented by a surface which
is of the fourth degree only (a quartic surface). We show in section 2 that a corresponding
change of variables (leading to a quartic representation of S) also exists in cases of non-
vanishing angular momentum. This constitutes an important simplification, in view of the fact
that the difficulty of parametrizing a surface increases rapidly with its degree.

As a second step (section 3) we remark that the quartic surfaces obtained present a certain
number of singularities (conic points) which are associated with the stationary points of the
spherical motion on S2 (points where the velocity vanishes, but in general the acceleration does
not). The parametrization problem is solved by cutting the surface by arbitrary straight lines
passing through one such conic point, i.e. by selecting as independent variables the parameters
defining the direction of these straight lines. (This amounts to a linear transformation in a
homogeneous coordinate system.)

From each line through a conic point, two tangent planes at the conic point may be drawn
since the tangent cone must be of the second degree. The tangent planes form a one-parameter
family, with parameter �, say. The two tangent planes issuing from a line thus determine a
pair of values (�1; �2), which turn out to be separable variables, meaning that the differential
system governing their evolution has a manifestly separable form.

2. Generalizing from non-rotating to rotating cases

2.1. The general form of the system

In an earlier paper (Gaffet 2001) we have shown that the equations of motion of the expanding
and rotating cloud in the case of vanishing vorticity may be written in the form:

d

du
ln �i = 2 vii (i = 1, 2, 3) (2.1)

dv

du
+ v2 − 1

3
Tr (v2) = [ω, v] + �−1 − 1

3
Tr (�−1) (2.2)

where � is a diagonal matrix of unit determinant, v a symmetric 3 × 3 matrix and u the
independent variable. The antisymmetric matrix ω is fixed by the off-diagonal part of v as

ωij =
(

�i + �j

�i − �j

)
vij (i �= j). (2.3)
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A related formulation, in terms of the permutation invariant quantities

Xn = Tr (� vn) (n = 0, 1, 2)
Yn = Tr (�−1 vn)

T = − 1
2 Tr (v2)

P = det (v)

(2.4)

was found to be especially useful for expressing compactly the integrals of motion; it is

T ′(u) = 3P − Y1

P ′(u) = − 2
3T

2 + ( 2
3 T Y0 + Y2)

X′
0(u) = 2 X1

X′
1(u) =

(
X2 − 2

3
T X0

)
+

(
3 − X0Y0

3

)

X′
2(u) = − 4

3 T X1 − 2
3 Y0X1

Y ′
0(u) = −2 Y1

Y ′
1(u) = −

(
3Y2 +

2

3
T Y0

)
+ 2

(
Y 2

0

3
− X0

)

Y ′
2(u) = 4 ( 2

3 T Y1 − P Y0) + 2( 2
3 Y0Y1 + X1).

(2.5)

The energy constant Ê (Ê = 9m/2) and the total angular momentum �J 2 (also denoted by
α2) then assume the following simple forms:

9m ≡ 2Ê = (X0X2 − X2
1) + 3X0

α2 ≡ �J 2 = (X0X2 − X2
1) + (3Y2 + 4 T Y0).

(2.6)

A third integral I6 and a fourth integral L6 were also determined in this paper.

2.2. The block-diagonal reduction

The system (2.1), (2.2) admits a reduction where the matrix v remains block-diagonal at all
times; this corresponds physically to a cloud rotating around a fixed principal axis (which we
take, without loss of generality, to be the third axis). This case was investigated in paper I, using
a different system of notation; it is thus of interest to establish the correspondence between the
two.

In this earlier work the role of the diagonal matrix � (which may be viewed as
parametrizing the unit 2-sphere, where the equivalent single-particle Hamiltonian motion takes
place) was played by a pair of variables π and X:

π ≡ 1

�3

X ≡ (�1 + �2)

�3

(2.7)

and we note that
X0 ≡ Tr (�) ≡ (X + 1)/π
Y0 ≡ Tr (�−1) ≡ (X + π3)/π2.

(2.8)

A 3-vector �ξ ≡ (ξ, η, ζ ) was introduced, representing the derivative of � (i.e. the diagonal
part v0 of v: see equation (2.1)), in the following way:√

3 ξ = (v22 − v33)/�1√
3 η = (v33 − v11)/�2√
3 ζ = (v11 − v22)/�3

(2.9)
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and, conversely,
√

3 v11 = (ζ �3 − η�2)√
3 v22 = (ξ �1 − ζ �3)√
3 v33 = (η�2 − ξ �1).

(2.10)

It was also shown that a certain variable ρ played an important role:

−(ρ + π) = (v2)33 +
T

3
. (2.11)

(In particular, the line ρ = 0 was shown by Gaffet (1998) to be a line of singularity of a
certain surface (S) in phase space; see below, section 2.4).

In paper I the expression of the integral I6 (also denoted 4ε) was found for the block-
diagonal case:

4 ε ≡ I6 = %2 + 4 f (ρ �1 + 1)(ρ �2 + 1) (2.12)

where

% =
(
ξ + η − ρ

π
ζ
)

f = α2π/3

(X2 − 4π3)
.

(2.13)

In terms of the new variables, the quantity f is

f ≡ (T0 − T )

3π
(2.14)

where

− 2 T0 ≡ Tr (v2
0) = (v2

11 + v2
22 + v2

33)

− 2 T ≡ Tr (v2)
(2.15)

and the expression of T0 in terms of the other variables has been given by Gaffet (2001).

2.3. The variable W

Fixing the values of the three integrals of motion m, ε and α2 results in an algebraic relation
F(X;π; ρ) = 0 (equation (6.6) of paper I), representing a two-dimensional surface (S) in
phase space, where all three integrals remain constant. In the non-rotating case where the
matrix v is diagonal, we found (Gaffet 1998) that the variables (π; ρ; ζ ) were particularly
suitable for representing that surface. However, when rotation is included, the variable ζ

requires some appropriate generalization.
In paper I, we found that the equation of S involved the variable ζ only through its square

ζ 2 and the product ζ%. Remembering definition (2.9) of ζ , we remark that its square:

ζ 2 = −π2(v2
33 + 4

3 T0)

involves a characteristic coefficient of the diagonal part v0 of v, rather than of v itself. Thus
the natural generalization of ζ 2 in rotating cases should be

Z ≡ (ζ 2 + 4π3f ) ≡ π2(ρ + π − T ) ≡ −π2[v2
33 + 4

3 T ]. (2.16)

The product ζ%:

ζ % =
(
ξ ζ + η ζ − ρ

π
ζ 2

)
(2.17)
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involves, in addition to ζ 2, the quantities

−η ζ

�1
≡ (v2)11 + T − 2

3
T0

−ξ ζ

�2
≡ (v2)22 + T − 2

3
T0

(2.18)

which admit the following block-diagonal natural generalization:

− 1

�1

(
η ζ − 2 f

�1

�3

)
≡ (v2)11 +

T

3

− 1

�2

(
ξ ζ − 2 f

�2

�3

)
≡ (v2)22 +

T

3
.

(2.19)

Therefore the variable generalizing the product ζ% is

−W =
(
η ζ − 2 f

�1

�3

)
+

(
ξ ζ − 2 f

�2

�3

)
− ρ

π
(ζ 2 + 4π3f )

= ζ % − 2 f (X + 2 π2ρ). (2.20)

This leads to a new formulation, replacing equations (6.4) and (6.5) of paper I, of the surface (S):(
α2

3
− 3m

)
= 1

π2
[ρ X + (ρ − π)Z] − (W + 1)

π
(2.21a)

(
4 ε +

α2

3π2

)
= W

π3
(X + 2 π2ρ) − (ρ + π)

π4
(X2 − 4π3) − Z

π3

(
ρ X

π
+ π ρ2 + 1

)
(2.21b)

ε Z +
α2

3
(ρ + π) = W 2

4
. (2.21c)

In terms of π , ρ and of the permutation invariants (2.4), W is also

W =
(
X2 +

T

3
X0

)
+

[ρ Z + (ρ + π)]

π

= X2 + T

(
X0

3
− π ρ

)
+

(ρ + π)

π
(π2ρ + 1). (2.22)

2.4. The singular line ρ = 0

When ρ = 0, system (2.21) reduces to(
3m − α2

3

)
π = W + 1 + Z (2.23a)

(
4 ε +

α2

3π2

)
= X

π3
(W − X) + 4 − Z

π3
(2.23b)

(
ε Z +

α2π

3

)
= W 2

4
. (2.23c)

The first and last equations determine π and Z linearly in terms of W :

4β π = +(W) ≡ (W 2 + 4 εW + 4 ε) (2.24)

where

β = 3 ε m +
α2

3
(1 − ε) (2.25)
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and the remaining equation then determines a pair of distinct solutions for X. This means that
the locus specified by the condition ρ = 0 is a line of intersection of two sheets of the surface
(S). As usual the singularity can be removed through the introduction of a variable (denoted
R) which reduces to the slopes of the tangent planes near the singularity:

R = �4β π − +(W)�
ρ

. (2.26)

It is worth noting that R is related to the variable X, as

−π R = 4 ε X + W 2 − 4
3 α2ρ (2.27)

which we may also write in the form

−R = 4 ε (�1 + �2) + (W 2 − 4
3 α2ρ)�3. (2.28)

The main advantage of introducing the variable R is that, while the surface (S) is of
degree 6 in coordinates (ρ;π;W ), it becomes a quartic surface in coordinates (ρ;R;W ).

It is of interest to consider the algebraic nature of the curve ρ = 0 in more detail. As
already mentioned, equation (2.23b) is of second degree in X:

X2 − XW + [4π3(ε − 1) + 3mπ − (W + 1)] = 0 (2.29)

and its algebraic genus is governed by its discriminant, which is a sixth-degree polynomial in
W :

(ε − 1) A6(W) = 4π3(ε − 1) + 3mπ − (W + 2)2

4
(2.30)

(where π is given versus W by equation (2.24)). An alternative equivalent form is

ε A6(W) = 4 ε π3 +
α2π

3
− W 2

4
(2.31)

and constitutes a straightforward generalization of the corresponding result (equation (3.2)
or (4.4)) obtained by Gaffet (1998). Whenever A6(W) has a double root the curve ρ = 0 is of
genus 1, and can be parametrized by elliptic functions.

A reduced form of A6 may be obtained through the linear transformation (assuming
0 < ε < 1)

(W + 2 ε) = 2 w
√
ε (1 − ε) (2.32)

which eliminates all odd powers of the independent variable, except the linear one:

β̂3A6 = 4 (w2 + 1)3 + β̂2

(
α2

3
− 3m

)
(w2 + 1) + P1(w) (2.33)

where

P1(w) = 2 β̂3
[
w

√
ε (1 − ε) + ( 1

2 − ε)
]

and

β̂ = β

ε (1 − ε)
.

In cases where ε is negative or greater than 1 on the other hand, letting

(W + 2 ε) = 2 w
√
ε (ε − 1) (2.34)

the reduced form is given by

β̂3A6 = 4 (w2 − 1)3 + β̂2

(
α2

3
− 3m

)
(w2 − 1) + P1(w) (2.35)
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where

P1(w) = 2 β̂3
[
w

√
ε (ε − 1) + ( 1

2 − ε)
]

and

β̂ = β

ε (ε − 1)
.

2.5. A new formulation

For the derivatives of the new variables (π; ρ;W ;R) we obtain expressions which are
straightforward generalizations of those (equations (2.31)–(2.34)) found by Gaffet (1998) for
the case without rotation:

[2 π ρ ′(u) − ρ π ′(u)] = R′(u)
4 ε

[2 π R′ − R π ′] = 2 WW ′ − 4α2

3
ρ ′

[2 (ρ + π)W ′ − W ρ ′] = +′ (W)
π ′

2
+′ (W)W ′ + 4 ε (R ρ ′ + ρ R′) = 4β π ′

(2.36)

(where the last equation results from differentiation of equation (2.26)). These four simple
relations between derivatives can be arranged compactly in matrix form. Introducing

x1 ≡ W x2 ≡ ρ x3 ≡ R x4 ≡ π

the system is

M [
−→
x ′ ] = 0 (2.37)

where [
−→
x ′ ] is the column vector with components x ′

i (u), and M is a 4 × 4 symmetric matrix,
whose coefficients are linear functions of the four coordinates

M =




− 4 (ρ + π) 2 W 0 +′(W)

2 W − 4α2/3 − 2 π R

0 − 2 π 1/(4 ε) ρ

+′ (W) R ρ − 4β


. (2.38)

Clearly its determinant must be zero: together with equation (2.26), the condition

det M = 0

constitutes the equation of the surface (S). It is an algebraic surface of fourth degree in
coordinates (ρ;W ;R).

The property of M to be symmetric is easily understood as a consequence of the fact
that it is only determined up to multiplication by an arbitrary (regular) matrix on the left;
multiplication by the appropriate rotation matrix will make M symmetric, in case it was not.

The cofactors Cij of M must be proportional to the products x ′
ix

′
j . The proportionality

factor may be easily determined from, e.g., x ′2
4 /C44; we have

x ′
4(u) ≡ π ′(u) = − 2 π v33

where

v2
33 = −

[
ρ + π +

T

3

]
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whereas

ε C44 = 4 (ρ + π)

(
4 ε π2 +

α2

3

)
− W 2.

Making use of equations (2.21c) and (2.16),

C44

4π2
=

[
4 (ρ + π) − Z

π2

]
= 3

[
ρ + π +

T

3

]
= − 3 v2

33.

The proportionality factor is thus an absolute constant:

Cij

x ′
ix

′
j

= C44

x ′2
4

= − 3. (2.39)

The new formulation in terms of the matrix M thus contains both the equation of the
surface (S), and the equations of evolution of the physical variables. It also contains their
solution, in the form of a quadrature, as will be shown in section 4.

For self-consistency the derivative d
d u

(det M) should vanish on the surface (S) where
det(M) = 0. Since M happens to be a linear function of the coordinates

M = M,i x
i + M0 (i = 1, 2, 3, 4) (2.40)

(where M0 and M,i are constant matrices), we have

d

d u
(det M) = Cij

d Mij

d u
= CijM,k ij x

′
k(u)

= − 3 x ′
ix

′
j x

′
k M,k ij

(with summation implied over repeated indices). It is thus sufficient that the four matrices M,i

satisfy the condition

M,kij + M,ijk + M,jki = 0

or, in compact form,

M(,kij) = 0 (2.41)

in order that d
d u

(det M) vanishes on the surface. That condition is, in fact, satisfied in the
present problem.

3. Separation of variables

As seen in the preceding section, the equations of motion are fixed by the 4 × 4 matrix M,
which is a linear function of four coordinates, and involves three free parameters (the integrals
of motion) m, ε and α2. We now choose for definiteness the particular values

m = 6 ε = 4 α2 = 12

which are not expected to be special in any way, inasmuch as the discriminant A6 (see
equation (2.30)) then does not present any double roots. We expect that the method of resolution
described below should remain valid for arbitrary values of all the parameters.

For the above values of ε and α2, the value m0 = 5 is special, since the polynomial A6

then has a double root, and it probably constitutes the physical minimum of the energy (see
paper I, section 7.4); therefore we selected a somewhat higher value.
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3.1. The conic points

The surface (S) of

F(ρ;W ;R) ≡ det(M) = 0 (3.1)

is a quartic surface in the space (ρ;W ;R); the main difference with respect to non-rotating
cases is that its dependence on ρ is now cubic, instead of merely quadratic—which makes it
more difficult to parametrize.

The property of F to be quadratic in ρ resulted from the presence of a singular point at
infinity in the direction of the ρ-axis—a conic point; it is thus natural to look for such conic
singular points on (S) in rotating cases. They are the stationary points of the motion on the 2-
sphere S2 (parametrized by the diagonal matrix �), where X1 = 0 = Y1, i.e. the diagonal part
of the matrix v vanishes, and accordingly the vector �ξ and the velocities ρ ′(u),W ′(u), R′(u)
(but, in general, not the accelerations) also vanish; they may be found by requiring that the
cofactors Cij of M vanish. These conditions yield the following system (using the notation
of paper I):

(X2 − 4π3) = α2π/3

ε
[Xθ + π ρ2 + 1] = α2π/3

(θ + 1)
(X + 1) [Xθ + X + 1] = 3mπ

(3.2)

for three unknowns X,π , ρ ≡π θ . The first two conditions express respectively that % = 0 (as
a consequence of the vanishing of �ξ)) and that f = (θ + 1); and the third condition expresses
the vanishing of the constant term in the second-degree equation (6.5) of paper I, as a result of
the vanishing of ζ 1.

We choose at random the following conic point K0 among the many solutions of this
system:

(K0)




ρ0 = 0.280 2187

π0 = 0.239 4700

X0 = 0.704 4976

(3.3)

from which the corresponding values of W and R may be deduced:

W0 = 3.197 240

R0 = −71.0352.
(3.4)

Straight lines through the point K0 intersect the surface (S) at two points distinct from
K0: in other words, the linear transformation (in homogeneous coordinates)

ρ̃ = 1

(ρ − ρ0)

W̃ = (W − W0)

(ρ − ρ0)

R̃ = (R − R0)

(ρ − ρ0)

(3.5)

produces a modified form of the quartic equation of (S):
F

(ρ − ρ0)4
≡ F̃ (W̃ ; R̃; ρ̃) = 0 (3.6)

1 It must be noted that the conditions determining a conic point:

Xl = 0 = Yl or Cij = 0

do not entail the vanishing of the velocity vector ξ if there is no rotation: in such cases the configuration of the cloud
becomes axisymmetric at a conic point (�1 = �2; ξ = η �= 0) and only ζ vanishes.
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where F̃ is still of the fourth degree, and is quadratic in ρ̃:

F̃ ≡ A (W̃ , R̃) ρ̃2 + B (W̃ , R̃) ρ̃ + C (W̃ , R̃) (3.7)

generalizing a similar equation (equation (2.20)) of Gaffet (1998). (The precise form of the
polynomials A, B and C is given in the appendix.)

The discriminant, (B2 −4AC), is a sixth-degree polynomial in W̃ and R̃, and it shares with
the discriminant of equation (2.20) the property of being fully decomposable into a product of
six linear factors:

R̃ − (piW̃ + qi) (i = 1, . . . , 6). (3.8)

3.2. Geometric interpretation of the new variables

Our earlier results (Gaffet 1998) suggest that the coefficients pi and qi should be related to the
roots �i of the polynomial A6 in the following way:

pi = P2(�i)

R2(�i)

qi = Q2(�i)

R2(�i)

(3.9)

where P2, Q2, R2 are quadratic polynomials. The latter condition ensures that the linear
factors (3.8) of B2 − 4AC admit (for a reason that will become apparent later) an alternative
expression as second-degree factors in �i .

The determination of P2, Q2 and R2 involves 12 linear equations for eight free parameters;
however, the correspondence between the roots �i and the linear factors (3.8) is not a priori
known, which makes the problem non-linear and its solution more difficult. Introducing the
variable

σi = (pi − pa)

(qi − qa)

(where a is a particular value of the index i), we remark that it is a homographic (Möbius)
function of �i ; in addition

τi = (σi − σa)

(σi − σb)

where b is another particular value of the index i, must be proportional to (�i − �a)

(�i − �b)
. This makes

it easier to establish the correspondence between indices of �i and (pi , qi), and finally to
determine the polynomials P2, Q2 and R2. As already observed, the linear factors (3.8) are
thus proportional to factors quadratic in �i :

(�2
i − �iS + P)

where S and P are ratios of linear inhomogeneous functions of W̃ and R̃:

S = N1(W̃ , R̃)/N3(W̃ , R̃)

P = N2(W̃ , R̃)/N3(W̃ , R̃).
(3.10)

Conversely

W̃ = U1(S, P )/U3 (S, P )

R̃ = U2(S, P )/U3 (S, P )
(3.11)

where U1, U2, U3 are linear inhomogeneous functions of S and P .
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This suggests introducing a pair of variables �1, �2, the roots of the second-degree equation

(�2 − � S + P) = 0 (3.12)

i.e.

(�1 + �2) = S (W̃ ; R̃)

�1 �2 = P (W̃ ; R̃).
(3.13)

In terms of the new variables, the coefficient A of the second-degree equation F̃ = 0 is

A = k1
(�1 − �2)

2

U 2
3

(3.14)

where k1 is a numerical constant. As for the discriminant, it assumes the essentially separable
form

(B2 − 4AC) = k4
m2

1 m
2
2

U 6
3

(3.15)

where k4 is another numerical constant, m2
i = m2(�i) (i = 1, 2), and m2 coincides with the

sixth-degree polynomial A6 found in the analysis of the singular curve ρ = 0; in the present
case

m2(�) ≡ (4�6 − 36�4 − 3042�2 − 13 500� − 14 283). (3.16)

For each value of �, equation (3.12) represents a straight line (�) in the (W̃ , R̃) plane, or a
corresponding plane (>) passing through the point K0 at infinity; let us similarly denote (�i)
as the line, and (>i) as the plane corresponding to the root �i of m2. The lines (�) in the
(W̃ , R̃) plane envelop a second-degree curve

(S2 − 4P) = 0

which is the locus where �1 = �2, and, in view of equation (3.14), is also the trace in that
plane of the tangent cone to the surface (S) at the conic point K0. In other words, the family
of tangent planes at K0 may be rationally parametrized by �, defined by equation (3.12). This
leads us to the following simple geometrical interpretation of the new variables.

Through each point in the (W̃ , R̃) plane, or each straight line passing through K0, one can
draw a pair of tangent planes to (S) at K0; the parameters of these two planes are respectively
�1 and �2.

We show in the next section that choosing (�1, �2) as dependent variables makes the
differential system under study manifestly separable.

When � = �i is a root of m2, any line passing through K0 in the plane (>i) is tangent to
(S), as a result of the vanishing of the discriminant B2 − 4AC (see equation (3.15)). Thus
the plane (>i) remains tangent to (S) all along a curve (κi), which is a second-degree curve
(a conic section) since (S) is of degree 4. Two such planes (>i) and (>j ) intersect on a line,
(�ij ) say, and the two corresponding conic sections (κi) and (κj ), which both pass through K0,
must intersect a second time at some point Kij on the line (�ij ). (The reason for that is that
(�ij ) is tangent to (S) at each intersection with (κi) or (κj ), so that each such intersection is
double; but (�ij ) cannot have more than four intersections in all with (S).) Clearly, Kij must
be a conic point of the surface (S), since there exist two distinct tangent planes (>i) and (>j )
at that point.

Thus the algebraic system (3.2) for the conic points presents the interesting particularity
that it can be easily solved, once one arbitrary particular solution (such asK0) has been obtained.
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3.3. The separation of variables

The new variables S and P may be directly expressed in terms of the original variables
(W,R, ρ), in a form analogous to equation (3.10):

S = H1(W, R, ρ)/H3(W, R, ρ)

P = H2(W, R, ρ)/H3(W, R, ρ)
(3.17)

where H1, H2, H3 are linear inhomogeneous functions. Through differentiation the derivatives
S ′(u), P ′(u) may be obtained, using the values W ′(u), R′(u), ρ ′(u) deduced from the cofactors
of M. It is found that they satisfy equations (4.10) of Gaffet (1998):

(S S ′2 − 2 P ′S ′) = 1

k
F (S, P )

(P S ′2 − P ′2) = 1

k
G (S, P )

(3.18)

where k is a numerical constant; F and G are the polynomials defined generally by
equations (4.11) and (4.12) therein, in terms of a priori arbitrary coefficients a0, . . . , a6 which,
in the present case, must be chosen to coincide with the coefficients of m2 (see equation (3.16)).
This shows that the equations of evolution of �1 and �2 have the separable form (equation (4.1)
in Gaffet (1998))

√
k �′

1(u) = m1

(�1 − �2)√
k �′

2(u) = −m2

(�1 − �2)
.

(3.19)

(Let us remark that, since k is negative in the present case (k = −45), real solutions are
restricted to the range of values of � for which the polynomial m2 takes negative values.)

4. The integrating factor

The separable form (3.19) of the system is immediately integrable by quadrature in the form
√
k d+ = d�1

m1
+

d�2

m2
(4.1)

where + is the integration constant. We may rewrite it as

d+ = (�1 − �2)

m1m2
(�′

1 d�2 − �′
2 d�1) (4.2)

or, in coordinates S, P ,

d+ =
(
S ′ dP − P ′ dS

)
m1m2

. (4.3)

Transforming back to coordinates (W̃ , R̃), we have

(W̃ ′dR̃ − R̃′dW̃ ) = ∂ (W̃ , R̃)

∂ (S, P )
(S ′ dP − P ′ dS) (4.4)

where, as a consequence of the form of the transformation formulae (3.11),

U 3
3
∂ (W̃ , R̃)

∂ (S, P )
= U1

∂ (U2, U3)

∂ (S, P )
+ (circular permutation) (4.5)

is a constant (k5, say). Hence

k5 d+ = U 3
3

m1m2
(W̃ ′dR̃ − R̃′dW̃ ). (4.6)



Gas clouds rotating around a principal axis: II. The separation of variables 9207

Taking account of equation (3.15), this becomes

k6 d+ = (W̃ ′ dR̃ − R̃′ dW̃ )√
B2 − 4AC

(4.7)

where

k6 = k5√
k4

.

Also, since

∂ F̃

∂ ρ̃
≡ (2 A ρ̃ + B) =

√
B2 − 4AC

we can write

k6 d+ = (W̃ ′ dR̃ − R̃′ dW̃ )

∂ F̃ /∂ ρ̃
. (4.8)

Generally speaking, if three Cartesian coordinates y1, y2, y3 (to be identified with W̃ , R̃

and ρ̃ respectively) obey a differential system and are submitted to a constraint

F (y1, y2, y3) = 0

the general solution of this system must have the form

(
−−→
grad F) d+ = Q(�y ′ ∧ d�y) (4.9)

where Q may be called the integrating factor. Thus in the present case the integrating factor
is a constant.

Finally, transforming back to coordinates

z1 ≡ (W − W0) z2 ≡ (R − R0) z3 ≡ (ρ − ρ0)

we find

(W̃ ′ dR̃ − R̃′ dW̃ ) = 1

z3
3

(�z, �z′, d�z) (4.10)

where the triple product is also

(�z, �z′, d�z) = (�z · −−→
grad F)

(z′
1 dz2 − z′

2 dz1)

∂ F/∂ z3
(4.11)

and
−−→
grad ≡

(
∂

∂ z1
, ∂

∂ z2
, ∂

∂ z3

)
.

Further, as a consequence of the form of the transformation formulae (3.5)
∂

∂ ρ̃
≡ − z3(�z · −−→

grad) (4.12)

and the general solution is therefore

− k6 d+ = 1

z4
3

∂ F/∂ ρ̃

∂ F̃ /∂ ρ̃

(
z′

1 dz2 − z′
2 dz1

)
∂ F/∂ z3

. (4.13)

Recalling F ≡ z4
3 F̃ , and taking account of the constraint F = F̃ = 0, we have

∂ F/∂ ρ̃

∂ F̃ /∂ ρ̃
= z4

3

and hence

− k6 (
−−→
grad F) d+ = (�x ′ ∧ d�x) (4.14)

where x1 ≡ W, x2 ≡ R, x3 ≡ ρ. Comparing with the general form (4.9) we see that the
integrating factor in the original coordinates is just a constant.

These results confirm the central role of the matrix M (section 2.5), whose determinant
is the function F , in both the formulation and the solution of the problem.
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5. Conclusion

Through an appropriate generalization (sections 2.2–2.4) of the variables (ρ,W,R) introduced
by Gaffet (1998) in cases without rotation, we have obtained a new formulation (section 2.5)
in terms of a 4 × 4 symmetric matrix M which is a linear function of the four coordinates
ρ,W,R and π (which is one of the two parameters defining the shape of the cloud). The
matrix M is not regular, and the constraint

det M = 0

determines a surface (S) in phase space (Liouville torus) where all three integrals of motion
remain constant. A geometrical study of the singular points (conic points) on that surface
directly leads to a reformulation in terms of a pair of separable variables �1 and �2. The general
form of the separable system (equation (3.19)) coincides with that found in non-rotating cases,
except for the coefficients of the sixth-degree polynomial m2(l), which depend on the values
of the three integrals of motion2.

Using the particular (but generic) example ε = 4,m = 6;α2 = 12, the polynomial m2(�)

has been found to coincide with a polynomial, denoted by A6 (section 2.4), which can be
obtained in a simple way through the analysis of the singular curve ρ = 0. As a result, the
separable formulation (3.19) may be considered to be precisely established for all values of
the three integrals of motion.

As pointed out in paper I (see section 7.4) the physical minimum of the energy constant,
for given values of the other integrals ε and α2, must correspond to a polynomial m2 having a
double root; these cases may thus be found by calculating the discriminant of m2 and requiring
it to vanish.

Appendix. The case ε = 4; m = 6; α2 = 12

The polynomial A6, or m2(�), which is given by equation (3.16), has the following four real
roots:

�a = 6.462 40

�b = − 1.839 69

�c = − 2.515 06

�d = − 4.252 77

(A.1)

and two complex conjugate roots, �e, �∗
e .

Performing the linear transformation (3.5), which removes the conic point K0 to infinity,
the equation of the surface (S) assumes the quadratic form (3.7), where the coefficients A, B,
C are the following polynomials in the new variables W̃ and R̃:

A (W̃ , R̃) = − 57.7869 + (91.3625 R̂ − 106.4472 W̃ )

+ (− 5.369 97 R̂2 + 60.1281 R̂ W̃ − 127.9787 W̃ 2)

B (W̃ , R̃) = 10.560 30 + (18.338 66 R̂ + 53.8983 W̃ )

+ (− 2.129 24 R̂2 + 4.474 29 R̂ W̃ + 54.4408 W̃ 2)

+ (− 0.280 2187 R̂3 + 5.598 62 R̂2 W̃ − 21.5690 R̂ W̃ 2 + 6.716 04 W̃ 3)

C (W̃ , R̃) = R̂ − (0.8 R̂2 + 8 R̂ W̃ + 14 W̃ 2) − (R̂3 + 1.6 R̂ W̃ 2 + 8 W̃ 3)

− W̃ 2 (R̂2 + 0.8 W̃ 2)

(A.2)

2 System (3.19) also coincides with the equations of motion for the Kowalevski top (Kowalevski 1889, 1890, Komarov
2001, Markushevich 2001), in which the polynomial m2 is of fifth degree.
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and we have introduced for convenience the rescaling

R̂ ≡ R̃

4 ε
= R̃

16
.

The discriminant B2 − 4AC is found to be decomposable into six linear factors of the
general form (3.8), with coefficients pi , qi which are related to the roots (A.1) of m2 by
equations (3.9), involving the following three quadratic polynomials P2, Q2, R2:

P2(�) = 0.142 958 �2 − 14.7252 � − 41.1358
Q2(�) = 0.768 010 �2 − 1.832 55 � − 34.2347
R2(�) = 1.374 02 �2 + 3.826 27 � + 0.828 790.

(A.3)
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